
ESERCIZI DI FISICA

- 1. Una leva di terzo genere, orizzontale, lunga $80 \, cm$, è collegata all'estremo libero (cioè quello senza fulcro) con una molla, che tira l'estremo verso il basso verticalmente, con una costante elastica di $175 \, N/m$. A una distanza di $50 \, cm$ dal fulcro agisce una forza motrice verticale diretta verso l'alto pari a $70 \, N$. Di quanto si allunga all'equilibrio la molla?
- 2. Una leva di secondo genere lunga $1.60\,m$ è collegata all'estremo libero (cioè quello senza fulcro) con una molla che solleva l'estremo verso l'alto allungandosi di $17.5\,cm$. A distanza di $60\,cm$ dal fulcro agisce una resistenza di $420\,N$ diretta verso il basso e a distanza di $1.40\,m$ dal fulcro agisce una forza motrice di $80\,N$ diretta verso l'alto. Sapendo che tutte le forze sono perpendicolari rispetto alla leva, determina la costante elastica della molla all'equilibrio.
- 3. Una leva di primo genere lunga $3.20\,m$ ha il fulcro nel punto medio. Da una stessa parte rispetto a esso sono applicate le forze di $20\,N$, $70\,N$, $100\,N$ con braccio, rispettivamente, di $30\,cm$, $60\,cm$, $120\,cm$. Quale forza occorre applicare con braccio di $1.40\,m$, ma disposta dalla parte opposta rispetto alle precedenti, per equilibrare la leva?
- 4. Una valigia è posta su un piano inclinato di 60° rispetto all'orizzontale. Sapendo che il coefficiente di attrito statico fra valigia e piano vale 0.40, stabilisci se la valigia è in equilibrio giustificando la risposta.
- 5. Un pompiere che pesa $830\,N$ si trova su una scala di peso trascurabile, appoggiata a un muro liscio. Supponi che la scala sia in equilibrio e, utilizzando i dati forniti in figura, determina l'intensità della reazione normale del muro. Calcola inoltre le intensità della reazione normale e della forza di attrito statico del pavimento sulla scala.

