
ESERCIZI DI FISICA

- 1. Un'automobile di massa $1200 \, kg$ che si muove a velocità v_0 ha un motore in grado di imprimere una forza frenante di $6000 \, N$. Sapendo che l'automobile sotto l'azione dei freni si ferma dopo aver percorso $90 \, m$, calcola il tempo che impiega l'automobile per fermarsi e la sua velocità iniziale v_0 .
- 2. Su un corpo inizialmente in quiete agiscono due forze perpendicolari di intensità rispettivamente $16.0\,N$ e $10.0\,N$. Calcola la massa del corpo sapendo che questo si sposta di $10.0\,m$ in $1.00\,s$.
- 3. Calcola la costante elastica di una molla che si allunga di 20 cm quando, sulla Luna, le viene appeso un oggetto di massa 300 g.
- 4. Stai spingendo un bambino sulla slitta su una superficie ghiacciata, praticamente senza attrito. Quando eserciti sulla slitta una forza orizzontale costante di 120 N, la slitta ha un'accelerazione di $2.5 m/s^2$; se la slitta ha una massa di 7.4 kg, qual è la massa del bambino?
- 5. Un uomo di $92\,kg$ che pratica lo sci d'acqua in un lago viene tirato da un motoscafo da fermo fino a una velocità di modulo $12\,m/s$ in una distanza di $25\,m$. Qual è la forza risultante sullo sciatore, assumendo che l'accelerazione sia costante?
- 6. Un Boeing 747 atterra e comincia a rallentare, fino a fermarsi, muovendosi lungo la pista. Se la sua massa è $3.50 \cdot 10^5 \, kg$, il modulo della sua velocità iniziale è $27.0 \, m/s$ e la forza di frenata risultante è $4.30 \cdot 10^5 \, N$:
 - (a) qual è il modulo della sua velocità dopo 7.50 s?
 - (b) quale distanza ha percorso l'aereo in questo periodo di tempo?
- 7. Tirando verso il basso una corda, sollevi un secchio pieno d'acqua di $4.35\,kg$ da un pozzo, con un'accelerazione di $1.78\,m/s^2$. Qual è la tensione nella corda?
- 8. Un'arma da fuoco di massa $1.2\,kg$ spara un proiettile di $20\,g$. L'accelerazione del proiettile è di $1.5\cdot 10^5\,m/s^2$. Determina l'accelerazione dell'arma.
- 9. Un treno sta percorrendo in salita un pendio inclinato di 3.73° a una velocità di $3.25\,m/s$, quando l'ultimo vagone si stacca e inizia a procedere per inerzia senza attrito.
 - (a) Dopo quanto tempo il vagone si ferma temporaneamente?
 - (b) Quale distanza percorre il vagone prima di fermarsi temporaneamen-
- 10. Durante una partita di hockey, a un disco di massa $0.12 \, kg$ viene fornita una velocità iniziale $v_0 = 5.3 \, m/s$. Se il coefficiente di attrito dinamico fra il ghiaccio e il disco è 0.11, quale distanza d percorrerà il disco prima di fermarsi?

- 11. Due scatole sono poste fianco a fianco su una superficie orizzontale liscia. La scatola più leggera ha massa $5.2\,kg$, quella più pesante $7.4\,kg$. Determina la forza di contatto fra le due scatole quando è applicata una forza orizzontale di $5.0\,N$ alla scatola più leggera.
- 12. Determina l'accelerazione delle masse mostrate nella figura, sapendo che $m_1 = 1.0 \, kg$, $m_2 = 2.0 \, kg$ ed $m_3 = 3.0 \, kg$. Determina inoltre la tensione nella corda che collega m_1 ed m_2 e quella nella corda che collega m_2 ed m_3 . Assumi che il tavolo sia privo di attrito e che le masse possano muoversi liberamente.

- 13. Un bambino scende da uno scivolo inclinato di un angolo di 26.5° al di sotto dell'orizzontale. Calcola l'accelerazione del bambino sapendo che il coefficiente di attrito dinamico fra il bambino e lo scivolo è 0.315.
- 14. Una moneta da $14\,g$ viene lanciata e scivola verso l'alto su una superficie inclinata di un angolo di 18° al di sopra dell'orizzontale. Il coefficiente di attrito dinamico fra la moneta e la superficie è 0.23, il coefficiente di attrito statico è 0.35. Determina il modulo, la direzione e il verso della forza di attrito:
 - (a) quando la moneta sta scivolando;
 - (b) dopo che la moneta si è fermata.