ESERCIZI DI FISICA

- 1. Quanto calore devi sottrarre da $0.96\,kg$ di acqua a $0^{\circ}C$ per formare dei cubetti di ghiaccio a $0^{\circ}C$?
- 2. Per convertire un blocco di ghiaccio a $-15^{\circ}C$ in acqua a $15^{\circ}C$ è necessario un trasferimento di calore di $9.5 \cdot 10^{5} J$. Qual è la massa del blocco di ghiaccio?
- 3. Un grande bicchiere contiene $3.99\,kg$ di limonata (che è essenzialmente acqua) a $20.5^{\circ}C$. Nella limonata viene immerso un cubetto di ghiaccio di $0.0550\,kg$ a $-10.2^{\circ}C$. Quali sono la temperatura finale del sistema e la quantità di ghiaccio rimasto (assumendo che ne sia rimasto)? Ignora qualunque scambio di calore tra il bicchiere e l'ambiente circostante.
- 4. Un cilindro di alluminio che pesa 155 g è rimosso da un bagno di azoto liquido, dove è stato raffreddato a una temperatura di $-196^{\circ}C$. Il cilindro è immediatamente posto in un contenitore isolato che contiene 80.0 g di acqua a $15.0^{\circ}C$. Qual è la temperatura di equilibrio di questo sistema? Se la tua risposta è $0^{\circ}C$, determina la quantità di acqua che si è congelata. Il calore specifico medio dell'alluminio in questo intervallo di temperatura è $653 J/(kq \cdot K)$.
- 5. Un blocco di ferro che pesa $825\,g$ è riscaldato fino a raggiungere la temperatura di $352^{\circ}C$ e quindi è posto in un contenitore isolato (con capacità termica trascurabile) che contiene $40.0\,g$ di acqua a $20.0^{\circ}C$. Qual è la temperatura di equilibrio di questo sistema? Se la tua risposta è $100^{\circ}C$, determina la quantità di acqua trasformata in vapore. Il calore specifico medio del ferro in questo intervallo di temperatura è $560\,J/(kg\cdot K)$.
- 6. In una fredda giornata d'inverno sul parabrezza della tua automobile si è formato uno strato di ghiaccio che ha uno spessore di $0.58\,cm$ e un'area $1.6\,m^2$. Se la temperatura del ghiaccio è di $-2.0\,^{\circ}C$ e la sua densità di $917\,kg/m^3$, qual è il calore necessario per scioglierlo completamente?
- 7. Un cubetto di ghiaccio di $35\,g$ a $0^{\circ}C$ è immerso in $110\,g$ di acqua contenuti in una tazza di alluminio di $62\,g$. La tazza e l'acqua hanno una temperatura iniziale di $23^{\circ}C$. Determina la temperatura di equilibrio della tazza e del suo contenuto.
- 8. Determina la quantità di calore che devi sottrarre a $1.5\,kg$ di vapore a $110^{\circ}C$ per convertirlo in ghiaccio a $0.0^{\circ}C$.
- 9. Calcolare la temperatura finale che si ottiene allorché 400 g di ghiaccio a $-25\,^{\circ}C$ vengono immersi in $0.600\,kg$ di acqua a $65\,^{\circ}C$. (Calore latente di fusione del ghiaccio $L_f=80\,cal/g$, calore specifico del ghiaccio $c_g=0.50\,cal/(g\cdot^{\circ}C)$)